
Universal homeomorphisms of and not of finite

presentation

Shane Kelly

July 4, 2018

Abstract

We show that on qcqs schemes any (completely decomposed) uni-
versal homeomorphism is a filtered limit of (completely decomposed)
universal homeomorphisms of finite presentation, at least up to refine-
ment.

Along the way we note that if f : Y → X is a finite universal
homeomorphism of qcqs Fp-schemes, then the nth iterated Frobenius
factors as through it for n big enough, Frobn : Y → X → Y [pn].

Recall that a universal homeomorphism (uh) is a morphism of schemes
T → S such that S′ ×S T → S induces a homeomorphism on underlying
topological spaces for every S-scheme S′. A morphism T → S is completely
decomposed (cd) if for every point s ∈ S there is a factorisation s→ T → S.
In this note we prove the following theorem.

Theorem 1 (Theorem 27). Suppose that T → S0 is a uh (resp. cduh) of
qcqs schemes. Then there exists a filtered system (Sλ → S0)λ∈Λ of uh (resp.
cduh) of finite presentation, and a factorisation

lim←−Sλ → T → S0.

Remark 2. We point out that the equal characteristic case is not so hard:
pulling back along the perfection of the seminormalisation of the reduction
(((S0)red)sn)perf we can assume that S0 is seminormal and f : T → S is com-
pletely decomposed. Since we can also assume T reduced, f is a cduh from
a reduced scheme to a seminormal scheme, and therefore an isomorphism.

The trickier case is when S0 is connected, not irreducible, and its irre-
ducible components have different characteristics, cf. Prop.22.
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On our way to proving Theorem 1 we prove the following which removes
the excellent hypothesis from [Kol97, Prop.6.6]. See Cor.20, Cor.21 for
versions without the “reduced” hypothesis.

Proposition 3 (cf. Cor.20). If S is a qc reduced Fp-scheme and f : T → S
a finite uh morphism, then there is some q = pn such that the nth iterated
Frobenius factors as

T
Frobn //

��

T

��
S
Frobn

//

??

S

As a corollary of Theorem 1 we deduce the following. We let SCHS
denoted the category of separated qcqs S-schemes.

Theorem 4. Suppose S is a qcqs scheme, C is a category admitting filtered
limits, and F : SCHS → C is a functor commuting with filtered limits. If F
sends finite presentation uh’s (resp. cduh’s) to isomorphisms then F sends
all uh’s (resp. cduh’s) to isomorphisms.

Proof. Suppose Y → X is a (cd)uh in SCHS . By Theorem 27, there is a
filtered system (Xλ→X)λ∈Λ of (cd)uh’s of finite presentation and a factorisa-
tion lim←−Xλ → Y → X. The morphism lim←−Xλ → X is again a (cd)uh Thm.9,
[EGAIV3, Thm.8.10.5(vi)(vii)(viii)], so lim←−Xλ → Y is also a (cd)uh, and we
can apply the theorem again to find a filtered system (Yρ→Y )ρ∈R of (cd)uh’s
of finite presentation and a factorisation lim←−Yρ → lim←−Xλ → Y . Now, As
F commutes with filtered limits and sends finite presentation (cd)uh’s to
isomorphisms, we have the diagram

F (limYρ) // F (limXλ) // F (Y ) // F (X)

and it follows that F (Y )→ F (X) is an isomorphism.

This note was motivated by applications to K-theory, motivic cohomol-
ogy, and topologies such as the cdh- and h-topologies. For example, we have
the following version of [HK18, Cor.6.12] which does not assume the base
to be Nagata. We let SchS denoted the category of separated finite type
S-schemes.

Corollary 5. Suppose that S is a separated noetherian scheme, and consider
the Grothendieck topology CDH on SCHS generated by the cdh-topology on
SchS. Then the image of the functor

hCDH : SCHS → ShvCDH(SCHS)
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is the localisation of SCHS at the class of cduh’s,

SCHS [cduh−1]
∼→ hCDH(SCHS).

In particular, for any X,Y ∈ SchS, we have

hcdh(Y )(X) = homSCHS (Xsn, Y sn) = homSCHS (X,Y sn).

Remark 6. Voevodsky proves a version of this statement for the h-topology
on SchS when S is excellent [Voe96], and Rydh proves a version for the
topology generated by open coverings and finite presentation universally
subtrusive morphisms on SCHS for S qcqs (this is the h-topology when
restricted to noetherian schemes), [Ryd10, Thm.8.16].

Remark 7. For the CDH-topology we don’t actually need the full power of
Theorem 4. It is enough to use part 1 of Theorem 25.

Remark 8. We implicitly use that SCHS is the category of schemes ob-
tained as limits of filtered systems in SchS with affine transition morphisms,
[Tem11, Thm.1.1.2].

Proof. First note that for any T ∈ SCHS , the system of cduh’s to T has
an initial element—the seminormalisation T sn → T , cf. [HK18, Prop.2.8],
[Swa80], and Lem.13. Consequently, the localisation SCHS → SCHS [cduh−1]
not only exists, it is the retraction of SCHS to the subcategory of seminormal
S-schemes (−)sn : SCHS → SCHsn

S .
Now, certainly, finite presentation cduh’s Y → X are sent to isomor-

phisms as they are covers and the diagonal induces an isomorphism Y red ∼→
(Y ×X Y )red. The functor SCHS → PreShv(SCHS) preserves limits, and
sheafification is exact, so we deduce from Theorem 4 that hCDH sends all
cduh’s to isomorphisms, and obtain a canonical factorisation

SCHS → SCHS [cduh−1]︸ ︷︷ ︸
∼=SCHsn

S

→ hCDH(SCHS).

Now to finish it suffices to show that for T, T ′ ∈ SCHsn
S the canonical mor-

phism homSCHS (T, T ′)→ hCDH(T ′)(T ) is an isomorphism.
Injectivity: Suppose f, g : T ⇒ T ′ are two morphisms that become

isomorphisms in hCDH(T ′)(T ). Then there is a CDH-cover U = {ιj : Uj →
T} such that f ◦ ιj = g ◦ ιj for each j. But as the family U is surjective and
completely decomposed, this implies f |η = g|η for each generic point of T ,
so there is a dense open U ⊆ T such that f |U = g|U , but then f = g as T is
reduced and T ′ separated.
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Surjectivity: For every element a of hCDH(T ′)(T ) there exists a CDH-
cover U = {Uj → T} such that a can be represented as an element of
eq (
∏

hom(Uj , T
′) ⇒

∏
hom(Ui ×T Uj , T ′)). We can assume that U is a

composition of a finite presentation completely decomposed proper mor-
phism Y → T , and a completely decomposed finite family {Uj → Y } of
finite presentation étale morphisms, [Kel18, Prop.34], [SV00, Prop.5.9]. For
covers of this form, we have

eq
(∏

hom(Uj , T
′) ⇒

∏
hom(Ui ×T Uj , T ′)

)
= eq

(
hom(Y, T ′) ⇒ hom(Y ×T Y, T ′)

)
as the fppf topology is subcanonical. Now Y can be refined by a composition
of a sequence of covers of the form {ι : Z → Y ′, π : B → Y ′} where Z → Y ′

is closed and B is a proper morphism which is an isomorphism outside
Z, [EGAIV3, Thm.8.8.2(ii),Thm.8.10.5], [SV00, proof of Prop.5.9]. So it
suffices to show that

hom(Y ′, T ′)→ hom(Z, T ′)×hom(E,T ′) hom(B, T ′)

is surjective when Y ′ is seminormal and E = Z ×Y ′ B.
Let B′ = Specπ∗OB, cf. [Stacks, Tag 03GY]. As B → B′ is proper,

the target topological space has the quotient topology of the source. So
by the cocycle condition, B → Z ′ factors through B′ → Z ′ as a map of
topological spaces. But then OB′ = π∗OB so it factors as a morphism of
locally ringed spaces, or rather, as a morphism of schemes. Let E′ = Z×TB′.
As Ered → (E′)red is dominant with reduced source, we have produced an
element of

hom(Zred, T ′)×hom((E′)red,T ′) hom((B′)red, T ′)

or equivalently, a morphism Zred t(E′)red (B′)red → T ′, but since T ′ is semi-

normal Zred t(E′)red (B′)red ∼= T . See [HK18, Lem.2.10] for the existence
of the pushout and the claimed isomorphism, noting that the statement of
[HK18, Lem.2.10] is for SchS but the proof is valid for SCHS , even replac-
ing “finite” with “affine, quasi-finite”, and certainly, B′ → T (and therefore
E′ → Z) is affine, quasi-finite, cf. [Stacks, Tag 0E0M].

1 Characterisations of universal homeomorphisms

Theorem 9. Let f : Y → X be a morphism of schemes. The following are
equivalent.
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1. f is a universal homeomorphism (uh): For every X-scheme T→X, the
morphism T ×X Y → T induces a homeomorphism on the underlying
topological spaces.

2. f is integral, surjective, and universally injective.

3. f is affine, surjective, and universally injective.

4. f is a homeomorphism, and for every y ∈ Y , the field extension
k(y)/k(f(x)) is purely inseparable.

Proof. The equivalence of (1) and (2) is [EGAIV4, Cor.18.12.11] (equiva-
lently [Stacks, Tag 04DF]). The equivalence of (2) and (3) is [Stacks, Tag
01WM], which actually says integral is equivalent to affine and universally
closed. (1) implies (4) because a morphism is universally injective (on topo-
logical spaces) if and only if it is injective and all residue field extensions are
purely inseparable, [Stacks, Tag 01S4]. Conversely, (4) implies (3) because
homeomorphisms are affine, [Stacks, Tag 04DE].

Remark 10. Note there are no finiteness conditions. There are universal
homeomorphisms that are not of finite type, [Bou64, Chap.6,Sec.8,Exercise
3b], and finite universal homeomorphisms that are not finitely presented.
For example countably many affine lines glued perpendicularly at the origin
A = lim−→n→∞ Fp[x1, . . . , xn]/〈xixj : i 6= j〉 and the map φ : A→A;x1 7→xp1
which is the Frobenius on the first one. Note the topology on Spec(A) is a
kind of “profinite-type” topology in the sense that any open U containing
the origin there is an N such that U contains all the nth line for all n > N .
To generate the kernel of A[y]→ A;

∑
amy

m 7→
∑
φ(am)xm1 , in addition to

yp − x1 one needs all the yxn for n > 1.

Lemma 11. Suppose that Y → X is a (cd)uh, and A ⊆ OY is a sub-OX-
algebra. Then both of Y → Spec(A)→ X are (cd)uh’s.

Proof. By Theorem 9 it suffices to prove that Y → Spec(A) is surjective.
But this follows from integrality, [Stacks, Tag 00GQ]. Cd-ness is clear.

Remark 12. Note that if A is reduced, then any uh φ : A→ B is injective.
Indeed, if φ(a) = 0, then φ(a) = 0 in every residue field of B. But as φ is
uh, this implies that a = 0 in every residue field of A, so a is contained in
every prime of A, so a is nilpotent. But A is reduced so a = 0 in A.
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2 Seminormalisation and perfection

Recall that a reduced ring A is seminormal if for every b, c ∈ A such that
b2 = c3, there exists a ∈ A with a3 = b, a2 = c, [Swa80]. The inclusion
SemNor → Red of seminormal reduced rings SemNor into all reduced
rings Red admits a left adjoint (−)sn : Red → SemNor, [Swa80, Thm.4.1].
This induces a right adjoint (−)sn to the inclusion functor{

Schemes s.t. OX is a sheaf
of seminormal rings

}
� {All schemes} : (−)sn

[HK18, Prop.2.8]. On affine schemes we have Spec(A)sn = Spec(Asn), and
on a general scheme X, the underlying topological space of Xsn is that of
X, and structure sheaf is the sheaf associated to the presheaf Osn

Xred .
The following lemma is in [Swa80] but not stated as we want it.

Lemma 13. It A is seminormal and B reduced, all cduh’s Spec(B)→Spec(A)
are isomorphisms.

Note, in [Swa80] which only deals with reduced rings, cduh’s are called
subintegral extensions.

Proof. By Rem.12 A → B is injective, so it suffices to show surjectivity.
Proof by contradiction. If A → B is not surjective, by [Swa80, Lem.2.6]
there is b ∈ B such that b2, b3 ∈ A, b 6∈ A. As A is seminormal there is
also a ∈ A such that a3 = b3, a2 = b2. By [Swa80, Lem.3.1] this implies
(a− b)3 = 0. But A and B are reduced, so a = b contradicting b 6∈ A.

Recall that an Fp-algebra A is perfect if Frob : a 7→ ap is an isomorphism.
The inclusion of perfect Fp-algebras into all Fp-algebras admits a left adjoint
(−)perf which can be explicitly calculated as:

Aperf = lim−→

(
A

Frob→ A
Frob→ A

Frob→ . . .

)
As we have A[S−1]perf = Aperf [S−1] and equalisers of perfect Fp-algebras
are perfect, (−)perf on Fp-algebras induces a right adjoint (−)perf to the
inclusion{

Schemes s.t. OX is a sheaf
of perfect Fp-algebras

}
� {All Fp-schemes} : (−)perf

[HK18, proof of Prop.2.8]. On affine Fp-schemes we have Spec(A)perf =
Spec(Aperf), and on a general Fp-scheme X, the underlying topological space
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of Xperf is that of X, and structure sheaf is the sheaf associated to the
presheaf Operf

X .

Remark 14. The map Frob : Aperf → Aperf is surjective, so for any ideal
I ⊆ Aperf the map Frob : Aperf/I → Aperf/I is surjective, so for any prime
p ⊂ Aperf the map Frob : k(p) → k(p) is surjective. That is, all residue
fields of Aperf are perfect.

Lemma 15. If A is a reduced resp. seminormal ring, then so is Aperf .

Proof. Let a ∈ Aperf with an = 0. For some q = pm, aq ∈ A. But then
(aq)n = aqn = (an)q = 0, so aq = 0, so since Aperf is perfect, a = 0.
Let b, c ∈ Aperf with b2 = c3. Choose q such that bq, cq ∈ A. Then 0 =
(b2− c3)q = (bq)2− (cq)3 so since A is seminormal there is (a unique) a ∈ A
with a3 = bq, a2 = cq. But (−)q is surjective on Aperf , so there is a′ ∈ Aperf

with (a′)q = a, and therefore ((a′)2 − c)q = 0, ((a′)3 − b)q = 0, but (−)q is
injective on Aperf so (a′)2 = c, (a′)3 = b.

3 The affine case

Lemma 16. Suppose that A ⊆ B is cduh of reduced rings. Then B is the
filtered colimit B = lim−→Bλ of the cduh A-algebras of finite presentation.

Proof. Certainly, every algebra is the filtered colimit B = lim−→Bλ of the fac-
torisations A→ Bλ → B through finite presentation algebras A→ Bλ, so it

suffices to show that the cduh ones are cofinal. Given some A→Bλ
φ→B, the

image φ(Bλ) is also cduh, Lem.11. As such, φ(Bλ) is the filtered union
of its subalgebras which are obtained by a finite number of elementary
cduh, [Swa80, Thm.2.8], (recall that an elementary cduh is a morphism
of reduced rings of the form C → C[b] such that b2, b3 ∈ C). As Bλ
is finite presentation, φ(Bλ) is finite, so φ(Bλ) itself is obtained by a fi-
nite number of elementary cduh extensions. Say φ(Bλ) = A[b1, . . . , bn]
with b2i , b

3
i ∈ A[b1, . . . , bi−1]. For any elementary cduh C → C[b], there

is clearly a surjection C ′ = C[x]/〈x2−b2, x3−b3〉 → C[b];x 7→ b, and in fact
(C ′)red = C[b], [Swa80, Lem.4.4]. So inductively, we build an epimorphism

A′ = A[x1, . . . , xn]/〈x2
i−bi,2, x3

i−bi,3 | i = 1, . . . , n〉 → A[b1, . . . , bn];xi 7→ bi

such that (A′)red = A[b1, . . . , bn] = φ(Bλ) where

bj,2, bj,3 ∈ A[x1, . . . , xi−1]/〈x2
i−bi,2, x3

i−bi,3 | i = 1, . . . , j − 1〉
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are lifts of b2i , b
3
i ∈ A[b1, . . . , bi−1]. Now (A′)red = φ(Bλ) is the filtered

colimit lim−→A′/I over finitely generated subideals I ⊆ nil(A′) so the mor-
phism with finite presentation source Bλ → φ(Bλ) factors through some
Bλ→A′/I→φ(Bλ). As A→ φ(Bλ) = (A′/I)red is a cduh, so is A→A′/I.

Lemma 17. Suppose that A is an Fp-algebra, and A′ a sub-A-algebra of
Aperf . Then A′ is a filtered colimit A′ = lim−→Bλ of finite presentation uh
A-algebras.

Proof. As every A-algebra A′ is the filtered colimit of the factorisations A→
Bλ → A′ through A-algebras of finite presentation, it suffices to show that

when A′ ⊆ Aperf , the uh’s are cofinal. Given some A→ B
φ→ A′, consider its

image φ(B). For each generator b1, . . . , bn of B, choose ai ∈ A and some p-
power q such that φ(bi)

q = ι(ai) in A′ ⊆ Aperf where A
ι→ A′ is the structural

morphism. Replacing B with B/〈bqi − ai〉, we can assume there exists an
epimorphism of the form B′ = A[x1, . . . , xn]/〈xqi − ai : i = 1, . . . , n〉 →
B. Now A → φ(B) and A → B′ induce uh’s, so the closed immersions
Spec(φ(B)) → Spec(B) → Spec(B′) are surjective, and therefore also uh’s.
Consequently, A→ B is a uh.

Lemma 18. If φ : A→ B is a uh of Fp-algebras, then for every b ∈ B there
is some q = pn such that bq ∈ φ(A).

Proof. If its true for A,B reduced, its true in general: Suppose there is a ∈ A
and a p-power q such that bq = φred(a) in Bred. Then bq − φ(a) is nilpotent
in B. So for some large enough p power q′, we have (bq − φ(a))q

′
= 0 in B.

Replacing q with qq′ and a with aq
′
, we can assume bq = φ(a) in B.

If its true for A seminormal, B reduced, its true for A,B reduced: Con-
sider the seminormalisation Asn of A, [Swa80, Thm.4.1]. There is a p-power
and a ∈ Asn such that bq = a in (Asn ⊗A B)red. So bq − a is nilpotent
in Asn ⊗A B, and as before, we can assume bq = a in Asn ⊗A B. As
A ⊆ Asn is subintegral, Asn is the subintegral closure of A in Asn, so by
[Swa80, Thm.2.8] there is some finite number of elementary subextensions
A ⊆ A[c1] ⊆ · · · ⊆ A[c1, . . . , cn] ⊆ Asn such that a ∈ A[c1, . . . , cn]. By
definition, c2

i , c
3
i ∈ A[c1, . . . , ci−1] for all i, so in particular, A[c1, . . . , ci]

p ⊆
A[c1, . . . , ci−1], and by induction, A[c1, . . . , cn]p

n ⊆ A. It follows that ap
n ∈

A, so replacing a with ap
n

and q with qpn, we have found a ∈ A and q such
that bq − a = 0 in Asn ⊗A B. But B → Asn ⊗A B is a cduh from a reduced
ring, so it is injective, Rem.12, and so bq = a in B.

If its true for A seminormal perfect, B reduced, its true for A seminormal,

B reduced: There is a ∈ Aperf = lim−→(A
Frob→ A

Frob→ . . . ) such that bq = a in
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(Aperf ⊗AB)red. As before, making q bigger and replacing a, we can assume
bq = a in Aperf ⊗A B. By construction of Aperf , there exists some q′ such
that aq

′ ∈ A ⊆ Aperf , so replacing a with aq
′

and q with qq′, we have bq = a
in Aperf ⊗A B for some a ∈ A. But B → Aperf ⊗A B is a uh from a reduced
ring, so it is injective, Rem.12, so bq = a in B.

Its true for A seminormal perfect, B reduced: If A is seminormal and
perfect, then φ is a cduh morphism from a seminormal ring to a reduced
ring, so it is an isomorphism, Lem.13.

Corollary 19. If S is a qc Fp-scheme and f : T → S a finite uh morphism,
then there is some q = pn such that OqT ⊆ im(OS).

Proof. Since S is qc, there exists a finite open affine cover {Ui}ni=1, and since
T → S is finite, for each i there exists finitely many generators fij ∈ OT (Ui).
Applying the previous part to each fij and choosing the largest q we obtain
a p power q such that OqT ⊆ im(OS). As S is reduced, OS = im(OS) so we
obtain the desired factorisation.

Corollary 20. Suppose S is a qc Fp-scheme and f : T → S a finite uh
morphism. The nth iterated Frobenius factors as

T

��

Frobn // T

��
S
Frobn

//

??

S

for some n, if and only if Frobn
′
ker(OS→OT ) = 0 for some n′, (e.g., if S

is reduced, Rem.12).

Proof. Suppose Frobn
′
ker(OS→OT ) = 0. Then Frobn

′
factors as OS →

im(OS→OT ) → OS . Next, Cor.19 gives an inclusion Op
m

T ⊆ im(OS→OT )
for some m. So we obtain the following commutative diagram

OT //

Frobm

))Op
m

T
//

))

OT
Frobn

′
// OT

im(OS→OT )

))

OO

OS
Frobm

//

OO

OS
Frobn

′
//

OO

OS

OO

Applying Spec produces the result. Conversely, if we have such a factorisa-
tion, then ker(OS→OT ) ⊆ kerFrobn.
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Corollary 21. Suppose S is a qc Fp-scheme and f : T → S a finite uh
morphism. Then there is a factorisation

T perf

��

// T

��
Sperf //

==

S

Proof. The kernel of OS → OT consists of nilpotents, Rem.12, and the
kernel of OS → Operf

S is the ideal of nilpotents so the argument of Cor.20
produces the dashed morphism, with Frobn

′
replaced with the canonical

ι : O → Operf . Here ι are the canonical morphisms.

T perf

��

ι

**
T perf

��

ι //
∼=

Frobmoo T
Frobm// T

��
Sperf

ι

44
Sperf

∼=
Frobm
oo

ι
//

77

S
Frobm

// S

Proposition 22. Suppose Spec(φ) : Spec(B)→ Spec(A) is a uh morphism
from a reduced affine scheme to a seminormal affine scheme. Then Spec(B)
is a filtered limit of uh morphisms of finite presentation.

Proof. It suffices to show that for every b ∈ B, there is a uh inducing A-
algebra of finite presentation B′ and a morphism B′ → B of A-algebras
such that b is in the image of B′. This is because finite presentation uh A-
algebras are closed under finite colimits1 and for any such φ : B′ → B, and
c ∈ kerφ, B′/c is again a uh A-algebra of finite presentation: Spec(B′/c)→
Spec(B′) is a closed immersion which is surjective because the homeomor-
phism Spec(B)→ Spec(B′) factors through it.

1To have all finite colimits it suffices to have finite coproducts and coequalisers. Clearly,
if A → B,B′ are two finite presentation uh A-algebras, then B ⊗A B′ is again a finite
presentation uh A-algebra, so we have finite coproducts exist. The coequaliser of two
morphisms φ, ψ : B ⇒ B′ between finite presentation uh A-algebras isB⊗B⊗AB(B′⊗AB′).
Since B and B⊗AB are finite presentation uh A-algebras, B⊗AB → B, and therefore also
B′ ⊗A B′ → B ⊗B⊗AB (B′ ⊗A B′), is a finite presentation uh morphism. Since B′ ⊗A B′
is a finite presentation uh A-algebra, it follows that the coequaliser is as well.
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It is convenient to replace B with A[b] ⊆ B, in other words, we can and
do assume that B = A[b]. Firstly, as A→ B is integral, there is some monic
f(x) ∈ A[x] such that

f(b) = 0 in B.

Next, AQ → BQ is a uh morphism from a seminormal Q-algebra to a reduced
ring, hence, an isomorphism, so there is some n > 0 and a ∈ A such that

n(b− a) = 0 in B.

Note b = a in B[ 1
n ] Let p1, . . . , pm be the primes dividing n. Since φ/pi :

A/pi → B/pi is a uh morphism of Fp-algebras, there is some pi power qi
and ai ∈ A such that bqi = a in B/pi, Lem.18. Now since bqi − ai = 0 in
B/pi, there is some b′i ∈ piB such that bqi − ai − b′i = 0 in B. Now we
use the assumption from the beginning that B = A[b]. Since B = A[b], we
have piB = piA[b], so there is some fi(x) ∈ A[x], such that pifi(b) = b′i.
Rewriting, we get

bqi − ai − pifi(b) = 0 in B.

Now consider

B′ = A[x]/

〈 f(x)
n(x− a)

(p1 . . . p̂i . . . pm)(xqi − ai − pifi(x)) : i = 1, . . . ,m

〉
with its canonical morphism x 7→ b to B. This is certainly finitely presented.
We claim it is a uh morphism. It suffices to show that it is integral, and
the morphism on Spec’s is surjective and injective with all field extensions
radicial. As f(x) is monic, it is certainly integral. The other conditions can
be checked after tensoring with each of Z[ 1

n ],Fp1 , . . . ,Fpm . Over Z[ 1
n ], we

have the retraction B′[ 1
n ] → A[ 1

n ];x 7→ a (note that a satisfies the other
relations, as a = b over Z[ 1

n ]), and plainly, A[ 1
n ] → B′[ 1

n ] is surjective (be-
cause x = a). So A[ 1

n ] ∼= B′[ 1
n ]. Over Fpi , the relations n(x − a) and

(p1 . . . p̂j . . . pm)(xqj − aj − pjfj(x)) for j 6= i vanish, (p1 . . . p̂i . . . pm) is a
unit, and we are left with xqi − ai. Pulling back A/pi → A/pi[x]/xqi − ai
to any residue field of A/pi gives either a purely inseparable extension, or
a nilpotent thickening, according to whether ai = 0 or not in that field. So
we have indeed produced a finitely presented uh A-algebra equipped with a
surjection B′ → B = A[b].

Corollary 23. Suppose that A → B is finite type, and I ⊆ B is an ideal
such that Spec(B/I)→ Spec(A) is a cduh of reduced affine schemes (resp. a
uh from a reduced scheme to a seminormal scheme). Then there is a finitely
generated ideal J ⊆ I such that Spec(B/J)→ Spec(A) is a cduh (resp. uh).
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Proof. By Lem.16 (resp. Prop.22) we can write B/I as a filtered colimit
of cduh (resp. uh) A-algebras of finite presentation lim−→Bλ = B/I. As B
is a finitely generated A-algebra, there is some λ such that Bλ → B/I is
surjective. On the other hand, the A-algebra B/I is the filtered colimit
lim−→B/Jρ = B/I over finitely generated subideals Jρ ⊆ I. Lift the surjection
Bλ → B/I to a surjection Bλ → B/Jρ producing the sequence

Spec(B/I)
cl.imm.−→ Spec(B/Jρ)

cl.imm.−→ Spec(Bλ)→ Spec(A).

By hypothesis, the composition and the unnamed morphism are cduh’s
(resp. uh’s), so the two closed immersions must be surjective. Consequently,
Spec(B/Jρ)→ Spec(A) is a cduh (resp. uh).

4 The general case

Lemma 24. Let S be a qcqs scheme. Then Sred → S is a filtered limit of
nilpotent thickenings of finite presentation.

Proof. The sheaf of nilpotents N ⊆ OS is the filtered union of its finite type
sub-quasicoherent sheaves, [EGAI, Cor.6.9.9].

Proposition 25. Let f : T → S be a morphism of qcqs schemes and τ a
class of morphisms such that either

1. S is reduced, f is the morphism Ssn → S, and τ = cduh, or

2. S is seminormal, T is reduced, and τ = uh.

Then f : T → S is the filtered limit over factorisations T → S′ → S such
that S′ → S is a τ of finite presentation.

Proof. As T → S is affine, T is the limit of a filtered system (Sλ→S)λ∈Λ of
affine S-schemes of finite presentation, T = lim←−Sλ, [EGAI, Prop.6.9.16(iii)].
This implies that, in fact, it is the limit of all factorisations T → S′ → S
through an affine S-scheme of finite presentation, [EGAIV3, Cor.8.13.2]. We
claim that for any such factorisation, there exists a finite type sheaf of ideals
J ⊆ OS′ such that Spec(OS′/J ) → S is a τ . This claims implies that the
factorisations T → S′ → S through a τ of finite presentation are final in
the system of all factorisations through finite presentation affine morphisms,
and the proposition follows.

Now we prove the claim. For each member of an open affine cover {Ui →
S} of S, using Cor.23 applied toOS(U)→ OS′(U) and I = ker(OS′(U)→OT (U)),
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we find Ji ⊆ ker(OS′(Ui)→OT (Ui)) such that Spec(OS′(Ui)/Ji) → Ui is
τ . Now for each i there is a finite type subideal Ji ⊆ ker(OS′ → OT )
with J |Ui = J∼i [EGAI, Cor.6.9.3, Cor.6.9.9]. Let J ⊆ ker(OS′ → OT )
be the ideal generated by the Ji. Then Spec(OS′/J ) → S is τ : Let
T ′ = Spec(im(OS′→OT )). Since T ′ → S is τ , Lem 11, to show that
Spec(OS′/J ) → S is τ , it suffices to show that the closed immersion T ′ →
Spec(OS′/J ) is surjective. For this it suffices to show it is surjective over
each Ui. This follows from the factorisation

T ′ ×S Ui
cl.imm.→ Spec(OS′(U)/J (U))

cl.imm.→ Spec(OS′(Ui)/Ji)
τ→ Ui,

whose composition is a τ .

Lemma 26. If (Sλ → S)λ∈Λ, (Tµ → lim←−Sλ)µ∈M are two filtered systems of
uh (resp. cduh) of finite presentation, then there is a filtered system of uh
(resp. cduh) of finite presentation (Uν → S)ν∈N with lim←−Tµ = lim←−Uν .

Proof. We can assume that the filtered categories Λ,M are filtered posets,
[?, Expo.1, Prop.8.1.6].

For each µ ∈ M , the uh (resp. cduh) there is a λµ ∈ Λ and a uh (resp.
cduh) of finite presentation Uµ → Sλµ such that Tµ is the pullback of Uµ to
lim←−Sλ, [EGAIV3, Thm.8.8.2(ii),Thm.8.10.5(vi, vii, viii)].2

Define N0 ⊆ Λ ×M to be the subposet of those pairs (λ, µ) ∈ Λ ×M
such that λ ≤ λµ, define U(λ,µ) = Sλ×Sλµ Uµ, and define the objects of N to

be the elements of N0. Define homN ((λ, µ), (λ′, µ′)) ⊆ homS(U(λ,µ), U(λ′,µ′))
to be the preimage of the morphism Tµ→µ′ .

The poset Λ×M is filtered because Λ,M are, and N0 is filtered because
it is final. One checks that for every (λ, µ), (λ′, µ′) in N there are morphisms
(λ′′, µ′′)→ (λ, µ), (λ′′, µ′′)→ (λ′, µ′) using [EGAIV3, Thm.8.8.2], which says
that homlim←−Sλ(Tµ, Tµ′) = lim−→λ≤α hom(Sλ ×Sλµ Uλµ , Sλ ×Sλ′

µ′
Uλ′

µ′
) where

α ∈ Λ is any element with α ≤ λµ, λ
′
µ′ . One uses the same theorem to

show that for any two parallel morphisms (λ, µ) ⇒ (λ′, µ′) in N , there is a
morphism (λ′′, µ′′)→ (λ, µ) such that the two compositions are equal.

The functor N → SchS is clear from the definition. On the other hand,
the pullback functors (lim←−Sλ)×Sλ − induce a functor N → Schlim←−Sλ which

2For cd-ness, it suffices to note that for any point s ∈ lim←−Sλ with images sλ ∈ Sλ, we
have k(s) = lim−→ k(sλ). Since each Sλ → S is a cduh, the transitions Sµ → Sλ are cduh’s,
so k(s) = k(sλ) for all λ ∈ Λ. The same applies to (Sλ×SλµUµ)λ≤λµ so it follows that
Tµ → Sλµ is cd iff Uµ → Sλµ is cd.
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factors through T− : M → Schlim←−Sλ via the morphism N → M ; (λ, µ) 7→ µ.

Using the universal property of the limit, one checks the left equality,

lim←−(N → SchS) = lim←−(U− : N → Schlim←−Sλ) = lim←−(T− : M → Schlim←−Sλ),

and the right equality follows from N →M being final.
As at the beginning, we can replace N with a poset if we desire, [?,

Expo.1, Prop.8.1.6].

Theorem 27. Suppose that T → S is a uh (resp. cduh) of qcqs schemes.
Then there exists a filtered system (Sλ → S)λ∈Λ of uh (resp. cduh) of finite
presentation, and a factorisation

lim←−Sλ → T → S.

Proof. By Lem.26, it suffices to prove the theorem for S′ ×S T → S′ when
S′ is a filtered limit of uh’s (resp. cduh’s) of finite presentation. By Lem.24
Sred → S is such a scheme, and by Prop.25 (Sred)sn → Sred is also such a
scheme. So we can assume that S is seminormal. Replacing T with T red, we
can also assume that T is reduced. But then T → S is a cduh (resp. uh) from
a reduced scheme to a seminormal scheme, and is therefore an isomorphism,
Lem.13, (resp. filtered limit of uh of finite presentation, Prop.25).
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